Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(26): 14395-14403, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37267531

RESUMO

Postsynthetic metal salt treatments are frequently employed in the luminescence enhancement of quantum dots (QDs); however, its microscopic picture remains unclear. CsPbBr3-QDs, featuring strong excitonic absorption and high photoluminescence (PL) quantum yield, are ideal QDs to unravel the intricate interaction between QDs and such surface-bound metal salts. Herein, we study this interaction based on the controlled PL quenching of CsPbBr3-QDs with BiBr3. Upon the addition of BiBr3, an instant and complete PL quenching is observed, which can be fully recovered after the addition of an excess of PbBr2. This, together with the complete preservation of the excitonic absorption suggests a surface-driven adsorption equilibrium. Additionally, time-resolved studies reveal a non-homogeneous surface trap formation. Based on the so-called sphere of action model for the adsorption process, we show that already a single BiBr3 adsorption suffices to completely quench a QD's luminescence. This approach is expanded to analyze size-, ligand-, and metal-dependent quenching dynamics. Facet junctions are identified as regions of enhanced surface reactivity. A Langmuir-type ligand coverage is exposed with a strong impact on adsorption. Our results provide a detailed mechanistic insight into postsynthetic interaction of QDs with metal salts, opening pathways for future surface manipulations.

2.
ACS Nano ; 15(7): 10775-10981, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34137264

RESUMO

Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.

3.
Angew Chem Int Ed Engl ; 56(50): 15876-15881, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-28902969

RESUMO

Herein, we report the design and synthesis of a series of novel cationic nitrogen-doped nanographenes (CNDNs) with nonplanar geometry and axial chirality. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the frontier orbitals of the CNDNs are energetically lower lying, with a reduced optical energy gap and greater electron-accepting behavior. Cyclic voltammetry shows all the derivatives to undergo quasireversible reductions. In situ spectroelectrochemical studies prove that, depending on the number of nitrogen dopants, either neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) are formed upon reduction. The concept of cationic nitrogen doping and introducing helicity into nanographenes paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons with cationic nitrogen dopants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...